Augmented Lagrangian methods for variational inequality problems

نویسندگان

  • Alfredo N. Iusem
  • Mostafa Nasri
چکیده

We introduce augmented Lagrangian methods for solving finite dimensional variational inequality problems whose feasible sets are defined by convex inequalities, generalizing the proximal augmented Lagrangian method for constrained optimization. At each iteration, primal variables are updated by solving an unconstrained variational inequality problem, and then dual variables are updated through a closed formula. A full convergence analysis is provided, allowing for inexact solution of the subproblems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Appoximation and Iterative Solution of a Class of Mildly Non - Linear Elliptic Equations

We describe in this report the numerical analysis of a particular class of nonlinear Dirichlet problems. We consider an equivalent variational inequality formulation on which the problems of existence, uniqueness and approximation are easier to discuss. We prove in particular the convergence of an approximation by piecewise linear finite elements. Finally, we describe and compare several iterat...

متن کامل

Smooth methods of multipliers for complementarity problems

This paper describes several methods for solving nonlinear complementarity problems. A general duality framework for pairs of monotone operators is developed and then applied to the monotone complementarity problem, obtaining primal, dual, and primal-dual formulations. We derive Bregman-function-based generalized proximal algorithms for each of these formulations, generating three classes of co...

متن کامل

Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization

We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...

متن کامل

Generalized Quasi-variational Inequalities and Duality

We present a scheme which associates to a generalized quasi-variational inequality a dual problem and generalized Kuhn-Tucker conditions. This scheme allows to solve the primal and the dual problems in the spirit of the classical Lagrangian duality for constrained optimization problems and extends, in non necessarily finite dimentional spaces, the duality approach obtained by A. Auslender for g...

متن کامل

Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions

In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RAIRO - Operations Research

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2010